
LogService manual

Abstract

LogService is a tool to monitor distributed applications. It provides services to collect messages from
different components of the application, to filter this data and to offer it to interested clients. It thus acts
as a common base between the application and it’s monitoring programs, simplifying the development
for both sides.

This manual explains the concepts of LogService, the provided APIs and the installation and usage of
the monitor. It further documents the supporting libraries which simplify the development of tools and
instrumentation code.

1

VERSION 2.2.0
DATE March 2008
PROJECT MANAGER Frédéric Desprez (Frederic.Desprez@ens-lyon.fr).
TECHNICAL MANAGER Eddy Caron (Eddy.Caron@ens-lyon.fr).
EDITORIAL STAFF Georg Hoesch.
AUTHORS STAFF Georg Hoesch (hoesch@in.tum.de)

Cyrille Pontvieux (cyrille.pontvieux@edu.univ-fcomte.fr)
Raphaël Bolze (raphael.bolze@ens-lyon.fr

Copyright INRIA

2

Contents

1 Overview 4

2 Basic concepts 4
2.1 The filter system . 4

2.1.1 Components . 4
2.1.2 Tags . 5
2.1.3 Messages . 5
2.1.4 Filters . 5

2.2 The statemanager . 5
2.3 Forwarding . 6

3 Installation of LogService 7
3.1 Compiling the sources . 7
3.2 Quick start . 8
3.3 Configuration file . 8

3.3.1 Forwarder configuration file . 9
3.4 Commandline arguments . 9

4 How to connect to the LogCentral 9
4.1 Connection of components . 9

4.1.1 The IDL interface . 9
4.1.2 The LogComponentBase library . 11

4.2 Connection of tools . 11
4.2.1 The IDL interface . 11
4.2.2 The LogToolBase library . 12

5 How to write a quick component/tool 13
5.1 Component . 13
5.2 Tool . 13

6 Technical details of LogCentral 14
6.1 Overview of the log . 14
6.2 Overview with the forwarders . 14
6.3 Connection of Components . 15
6.4 Connection of Tools . 16
6.5 Configuration of filters . 16
6.6 Processing messages . 16

7 Future works 16

3

1 Overview

LogService is a tool that can monitor distributed applications. It acts as a common base with well defined
interfaces between the application and it’s components on the one side and the tools who monitor the
application on the other side. LogService itself consists of two parts, the main program LogCentral (often
referred as monitor) that implements the monitoring functionality and two libraries. These libraries are
the LogToolBase and the LogComponentBase. They can be used to simplify the development of tools
and the instrumentation of application code by providing APIs to communicate with the LogCentral in
C++ or Java.

Note that the usage of these libraries is optional, the connection to the core can also be implemented
directly by the application using the provided idl interfaces. The features offered by the LogCentral
include:

• Communications in CORBA
Both tools and application communicate with the LogCentral using CORBA. This is a very flexible
approach since CORBA does not depend on certain platforms. Using the provided idls, almost any
kind of application or tool can connect to LogCentral.

• Classification of messages
Each information processed by the core is exchanged as a ’message’. Besides their information, these
messages provide two fields ’component’ and ’tag’. These allow the introduction of a general filter
system to classify the messages in two dimensions.

• Filtering of messages
Based on the possibility to classify messages, each connected tool can define it’s own set of filters
to define it’s own view on the application. The monitor guarantees that each tool gets exactly the
messages it wants.

• Prefiltering of messages
One problem when instrumenting an application is that a part of the information gathered is only
needed by very few tools which are not always connected. As sending messages is costly, the core
offers methods to allow a prefiltering of messages in the application, minimizing the number of
messages that have to be sent.

• Message ordering
Ordering of messages is always complicated in distributed environments. LogService uses timestamps
in conjunction with internal synchronisation mechanisms to allow proper message ordering. It also
offers the possibility to hold back messages for a short period of time to compensate minor lags and
deliver a sorted stream of messages to the tools.

• Hold system state
To allow tools to connect at any time, LogCentral holds the state of the monitored system. This
does not only include which components are currently connected, it can also contain information on
details of the system which are not directly known to LogCentral.

• Proxy forwarder
To monitor each diet component, even when they are on machines hidden behind firewall. A
forwarder must be launched between the two sides to be usefull, multiple forwarders may be used
to jump between various firewall.

2 Basic concepts

2.1 The filter system

As already mentioned in the overview, messages are classified by two properties, ’tag’ and ’component’.
This section explains what these properties are and how they can be used to filter messages on a very
general base.

2.1.1 Components

Let’s first look at the components. No distributed application consists of only one single program on
one host, but of several parts running in different processes on different hosts. When monitoring the

4

application one is usually interested in where exactly an event occured. The problem is that the different
programs of the application can further be divided into distributed objects, logical objects, implemented
objects and functions. The needed granularity of monitoring highly depends on the actual instrumentation
of the application code and must not be restricted by the monitoring system.

LogService solves this problem by just offering logical components. The user decides to which parts
of the application each component corresponds. By doing so he defines a view on the application. Al-
though it is not necessary, it is recommended that the application is monitored with constant granularity.
Monitoring some parts of the application with higher granularity than other parts works, but may lead
to confusion when building tools. It is also recommended to leave the granularity on a relatively coarse
level as it can be refined further by the ’tag’ field.

In practice, each component is identified by it’s name. This name can either be set by the programmer
or generated automatically by the LogCentral. Each component connects and disconnects independently
to the LogCentral and can send it’s own messages and receive it’s own set of prefilters.

2.1.2 Tags

Each component usually generates a number of different messages. These messages can be distinguished
by the ’tag’ field. It defines what kind of information this messages carries. For example a component that
represents a server may generate two different tags to indicate the start and the end of a client request.
Just like the components define a view based on the origin of a message, the tags define another view
based on the type of the message. This type corresponds to the function of their origin. It can be used to
monitor certain functionality of the application without explicitly choosing each necessary component. If
we want to monitor all servants of the example above, we just filter for their tags and to get all relevant
messages.

Although tags and components are not completely independant, they can be used together to define
a very granular and flexible way of filtering. The component denotes the coarse origin of a message and
the tag further refines this information.

2.1.3 Messages

Based on this information we now define the messages. Each message contains the following fields:

• Tag

• Component

• Timestamp

• Content

In addition to ’tag’ and ’component’, each message contains a timestamp with a precision of milliseconds
and the content, a string that can carry any data associated with the message. It can be left empty
very often, as the generation of a message with this tag from a certain component already contains all
necessary information. It is recommended to define a structure of the content field for each tag. In our
example above this may be the name of the client for the ’beginRequest’ tag and the empty string for
the ’endRequest’ tag.

2.1.4 Filters

Filters can be directly derived from the classification fields. Each filter consists of two sets. One set
contains all tags that are of interest, the other one contains all components that are of interest. A special
element (the character *) that matches all components/tags exists for each set. Through the combination
of several filters, almost any subset of messages can be selected, allowing tools to define exactly the view
they want.

2.2 The statemanager

Many tools are interested in the state of the monitored system. This state is represented by a number
of messages in LogService. The problem is that some of these messages are generated only once at the
startup of the system. As tools can connect at any time, they will not necessarily receive these messages.

5

A simple solution to this problem is to store all received messages and to resend them to connecting
tools. This solution works, but it is not very efficient as most messages contain no information relevant
for the system state. LogService refines this solution by identifying messages that affect the system
state. These messages will be stored for resending while all other messages are just passed through. An
advantage of this solution is that tools do not have to treat the system state separately. They always
receive a stream of messages that represents the whole system after they connected.

This concept is implemented in LogCentral’s statemanager. It identifies important messages by their
tag and stores them for connecting tools. To further increase the performance, the statemanager knows
several classes of important messages.

• Administrative messages.
This group contains two tags IN and OUT which are automatically generated by the LogCentral
if a component connects or disconnects. All messages with an IN tag will be kept until an OUT
is received. This OUT message will not be stored. Instead all messages concerning it’s component
will be removed from the statemanager. This group is fixed and cannot be changed.

• Static messages and unique messages.
Tags that are declared as unique or static will be stored until the component is disconnected with an
OUT. The difference between unique and static is that only one message can exist for each unique
tag, while several messages can exist for each static tag. This means that all messages with static
tags will be stored, but messages with unique tags will overwrite older messages with this tag.

• Dynamic messages.
Dynamic tags try to model processes that are started and stopped within a component. They always
come in pairs. One tag indicates that the service identified by this tag is started, the second tag
indicates that this service is stopped and will remove itself and the corresponding start message
from the statemanager. This class can not reflect dynamic processes (yet) as only one process can
exist for each tag. We hope that this problem will be solved in future versions of LogService.

2.3 Forwarding

The forwarder system is based on the same idea as the DIET forwarder. The main idea is simple, the
forwarder manage a SSH tunnel between the two sides of the firewall, and resolves using object names
the naming service reference to use. Thus, the user/programmer does not see any difference, he keeps
thinking he is using its object directly, whereas on one side he is just using its name, and on the other
side the name is resolved and the object is manipulated.

Here is a simple example of how to launch the forwarder between two machines:

• On the distant machine graal (graal.ens-lyon.fr)
./logForwarder –name ¡name d¿ –net-config ¡path d¿/forwarder.cfg

• On the local machine
./logForwarder -C –peer-name ¡name d¿ –ssh-host graal.ens-lyon.fr –remote-port 50005 –name ¡name l¿
–net-config ¡path l¿/forwarder.cfg –remote-host localhost –ssh-login ¡login¿

Explanations

• logForwarder: Name of the forwarder programm

• –name ¡name d¿/¡name l¿: Name of the forwarder (available in the omninames after). name d for
distant name to give, name l for local name to give.

• –net-config: Configuration file for the forwarder, they are called ¡path d¿/forwarder.cfg and ¡path l¿/forwarder.cfg
in the example.

• -C: Option to create the SSH tunnel between the forwarder. It requires 3 more arguments :

– –peer-name: Name of the corresponding forwarder on the other side (the name given to –name
on the other side)

– –ssh-host: Host to establish the SSH tunnel

– –remote-port: A free port to create the SSH connection. He can be any free port (around 50000
may be a good idea to find a free one).

• –remote-host localhost: Option to add for loopback (otherwise there might be ssh problems)

• –ssh-login: Option if the login name on the other machine is different of the local login

6

3 Installation of LogService

3.1 Compiling the sources

The LogService sources can be obtained at http://graal.ens-lyon.fr/DIET/download.html. In order
to use and install the package, omniORB 4 must be installed. The OmniORB package can be downloaded
at http://omniORB.sourceforge.net. Please unpack, compile and install omniORB before proceeding.
After that please unzip and untar LogService. You will find the following directories:

src/ All sources needed to compile LogService, the forwarder and the libraries.
src/idl/ All idl interfaces used by LogService and forwarder.
src/utils/ General classes that are not LogCentral specific.
src/monitor/ The main monitor program.
src/tester/ A small program that tests the monitor’s internals. DEPRECATED
src/libraries/ The supporting libraries in C++ and java.
src/examples/ Two examples using the C++ libraries. The two tested tools are ’testTool’ that creates a small tool displa

LogService compilation process moved away from the traditional autotools way of things to a tool named
cmake. LogService requires using cmake at least version 2.4.3. For many popular distributions cmake

is incorporated by default or at least apt-get (or whatever your distro package installer might be) is
cmake aware. Still, in case you need to install an up-to-date version cmake’s official site distributes many
binary versions (alias packaged as tarballs) which are made available at http://www.cmake.org/HTML/

Download.html. Optionally, you can download the sources and recompile them: this simple process
(./bootstrap; make; make install) is described at http://www.cmake.org/HTML/Install.html

Compilation using cmake for the impatients : Assume that LOGSERVICE_HOME represents a
path to the top level directory of LogService sources. This LogService sources directories tree can be ob-
tained by users by expanding the LogService current source level distribution tarball. Additionally, assume
we created a build tree directory and cd to it (in the example below we chose LOGSERVICE_HOME/build

as build tree, but feel free to follow your conventions):

• cd LOGSERVICE_HOME/build

• ccmake .. to enter the GUI

– press c (equivalent of bootstrap.sh of the autotools)

– specify the CMAKE_INSTALL_PREFIX parameter (if you wish to install in a directory different
from /usr/local,

– press c again, for checking required dependencies

– check all the parameters preceded with the * (star) character whose value was automatically
retrieved by cmake.

– provide the required information i.e. fill in the proper values for all parameters whose value is
terminated by NOT-FOUND

– iterate the above process of parameter checking, toggle/specification and configuration until all
configuration information is satisfied

– press g to generate the makefile

– press q to exit ccmake

• make in order to classically launch the compilation process

• make install when installation is required

The main configuration flag is :

• OMNIORB4_DIR is the path to the omniORB4 installation directory (only relevant when omniORB4
was not installed in /usr/local). Example: cmake .. -DOMNIORB4_DIR:PATH=$HOME/local/omniORB-4.1.2

The install directory will contain the following subdirectories:

bin/ The LogCentral executable and a sample configuration file.
lib/ The libraries and their headers for java.

7

3.2 Quick start

To start a quick demonstration without forwarder, please run the following programs in the given order:

• omniNames. The CORBA Namingservice is needed by LogService. Please make sure that the
namingservice is declared as an initial reference in the omniORB configuration file.

• bin/LogCentral. The config.cfg file will be selected by default.

• examples/testTool. This tool will display all messages. The connection of the tool should already
be displayed by LogCentral.

• examples/testComponent. This program simulates a (very simple) component that just sends two
messages. These messages can be watched with the testTool.

3.3 Configuration file

Before usage, several parts of the LogCentral should be configured by the user. This mainly includes the
configuration of the statemanager and some internal parameters of LogCentral. All important options
can be set in the mandatory configuration file that can be stored anywhere on your system. LogCentral
knows two possibilities to define the location this file.

1. Add -config pathToConfig.file when calling LogCentral.

2. Set the environment variable $LOGCENTRAL CONFIG.

If no config file is set, LogCentral tries to open the default config file ./config.cfg.

The configuration file is composed of five sections. Each section begins with its [sectionname] in square
brackets, followed by it’s parameters. The sections are mandatory, even if they contain no parameters.
Parameters are optional and only one parameter can be specified per line. Empty lines are ignored and
comments start with ’#’ and stop at the end of the line.

The first section is the [general] section which allows the configuration of parameters that control the
behaviour of LogCentral. It offers the following parameters:

• port = xxx
Tells omniORB to use the port xxx for communication.

• MinAge = xxx (in milliseconds)
Defines the minimum period of time that messages will be stored in the LogCentral. Messages that
arrive out of order during this period will be sorted by the LogCentral. A high value guarantees
correct sorting even under bad circumstances while a low value does not slow down the flow of the
messages through the core.

• DynamicStartSuffix=START
See [DynamicTagList]

• DynamicStopSuffix=STOP
See [DynamicTagList]

All remaining sections configure the statemanager. They are named [DynamicTagList], [Static-
TagList], [UniqueTagList] and [VolatileTagList] and correspond directly to the classes of the statemanager.
The [VolatileTagList] section should contain all existing tags are not important. It is not essential for
operation, but it can be requested by tools that want to find out which tags can be monitored.

All entries in the statemanager sections will be directly considered as tags. The only difference is the
list of unique tags. The pairs cannot be defined freely but every tag in this list will be expanded with two
suffixes to generate the pair. The default suffixes are START and STOP. So for example the tag WORK
will be expanded to WORK START and WORK STOP. The names of the suffixes can be configured in
the [General] section.

A correct configuration file could look like the following example.

[General]

port = 4242 # use a specific port

MinAge = 100 # 100 ms buffer time. This is not much, but

it guarantes fast message forwarding

8

[DynamicTagList]

we have no dynamic tags but the section is mandatory

(even if empty)

[StaticTagList]

DESCRIBE_DATA

[UniqueTagList]

DATA_COUNT # new DATA_COUNT messages will overwrite old ones

[VolatileTagList]

ADD_DATA

REMOVE_DATA

3.3.1 Forwarder configuration file

accept everything from everyone

accept:.*

reject nothing

reject:192\.168\.1\.6

The reject line corresponds to the IP of the machine on the network. It is safer than using
reject:localhost which may make the messages to be misrouted.

3.4 Commandline arguments

LogCentral was designed to need as few commandline arguments as possible. Anyway it supports
the full set of omniORB commandline options to change the behaviour of the ORB. Please read
the omniORB manual for details.

4 How to connect to the LogCentral

4.1 Connection of components

This section documents how components can connect to the LogService. It explains the various
interfaces and data types defined in the LogCentral IDL files and it describes how to use the
LogComponentBase libraries to instrument your application easily.

4.1.1 The IDL interface

Let’s first look at the IDL files. LogTypes.idl defines all data types that are used in the system,
in particular the log msg t. All interfaces that must be known to connect a component to the
LogCentral are define in LogComponent.idl. It’s two big interfaces ComponentConfigurator and
LogCentralComponent will now be described in detail.

interface ComponentConfigurator {

void setTagFilter(in tag_list_t tagList);

void addTagFilter(in tag_list_t tagList);

void removeTagFilter(in tag_list_t tagList);

}

The ComponentConfigurator is an interface that must be offered by the component. This is
necessary to allow the prefiltering of messages on the component. The filter on the component
will be updated actively by the LogCentral whenever necessary by using this interface.

9

A filter on the level of the component (also called the component’s configuration) is just a set of
tags. It is represented by a list of strings in LogService that has the type tag list t. A new con-
figuration for the component is passed with every call to the ComponentConfigurator. Depending
on which method is called, the component must change it’s filters accordingly. SetTagFilter()
defines the whole filter. Each tag in it’s list must be sent, all other tags must not be sent.
AddTagFilter() and removeTagFilter() just modify the existing filter by adding or removing
tags, leaving the status of all other tags untouched.

interface LogCentralComponent {

short

connectComponent(inout string componentName,

in string componentHostname,

in string message,

in string compConfigurator,

in log_time_t componentTime,

inout tag_list_t initialConfig);

short

disconnectComponent(in string componentName, in string message);

oneway void

sendBuffer(in log_msg_buf_t buffer);

[...]

The connect, disconnect and send function are the essential parts of the LogCentralComponent.
Each component must connect to the LogCentral with connectComponent() to register itself and
negotiate it’s name. The component can propose a unique name or completely rely on autogen-
erated names. If the connect is successful, the tool will receive a unique name that it must use
directly or indirectly for all following calls. The name will be valid until disconnectComponent()
is called. This unregisters the component and frees it’s name. Do not use the name any more
after the disconnection.

The parameters of disconnectComponent() and sendBuffer() should be self explaing, but
the signature of connectComponent() is complicated and will thus be explained in detail.

• componentName

The name of the component. If this name is empty, the LogCentral will create a unique name
for this component and return it in this variable. Otherwise the LogCentral will check if
this name is already connected. It will return with LS COMPONENT CONNECT ALREADYEXISTS

immediately if the component could not be registered.

• componentHostName

The name of the component’s host. Autogenerated names will be based on this name to
allow rudimentary identification of autogenerated components. LogCentral does not rely on
this parameter.

• message

The message that will be sent with the IN message that will be generated by LogCentral.

• compConfigurator

A string corresponding to the name of the component to be called. It is a string and not a
CORBA reference since the forwarders cannot use references directly.

• time

The actual time on the component right before connection. This value is used to determine
the initial latency between component and monitor.

• initialConfig (OUT)
The initial filter configuration of this component. The LogCentral might also use the Com-
ponentConfigurator, but passing this parameter as an out parameter guarantees synchroni-
sation from the beginning.

10

[...]

void

ping(in string componentName);

void

synchronize(in string componentName, in log_time_t componentTime);

void

test();

}

The remaining functions of the interface deal with the time synchronisation and the heart-
beat of components. The LogCentral automatically disconnects inactive components, so each
component has to call ping() in regular intervals keep the connection alive. The synchronize()
function recomputes the latency between the component and the monitor. It also should be called
from time to time to react upon changes in the network connection. Test() exists to control the
status of a LogCentralComponent reference. It does nothing and can be used to check if the
reference is valid.

Components that want to connect to the LogCentral need to obtain a reference to it’s
LogCentralComponent servant. This reference will be registered in the Naming Service by Log-
Central. The name of the reference is ’LCC’ in the context ’LogServiceC’. The kind of reference
and context is empty.

4.1.2 The LogComponentBase library

DEPRECATED (the library is out of date)
All the interfaces described above are implemented in the LogComponentBase library. It hides

many details of the connection and the ComponentConfigurator and can be used to easily create
a component for a certain application. Using the LogComponentBase requires only the most
essential parameters for each function. The name of the component can be set with setName(),
connection and disconnection just require the message and all synchronisation is done internally.
The application can use the isLog() function to find out if a certain tag is required in the moment
or not. Messages can easily be generated by sendmsg().

As the LogComponentBase is available in C++ and Java, no exact description of the class is
given here. Look at the C++ header file1 and the java source code2 for details. The C++ library
is based on omniORB and will be built together with the LogCentral. The java library relies
on JAVAs built in ORB and is distributed in source code only. There is no compilation support
through the makefiles, so you must compile the IDL files and all the java classes yourself. Please
note that the LogComponentBase was not extensively tested yet and may still contain bugs.

4.2 Connection of tools

4.2.1 The IDL interface

This section explains how tools can connect to the LogCentral. It presents the interfaces that can
be used to define filters and to receive messages as well as the LogToolBase, a library that can be
used to easily build tools.

The essential interfaces to connect tools to the LogCentral are defined in LogTools.idl. It relies
on LogTypes.idl just like LogComponent.idl and it’s main interfaces will be presented now.

interface ToolMsgReceiver

{

oneway void

sendMsg(in log_msg_buf_t msgBuf);

};

1libraries/LogComponentBaseC++/LogComponentBase.hh
2libraries/LogComponentBaseJava/LogComponentBase.java

11

Whenever the monitor receives a message that is of interest for a tool, it actively forwards
this messages to the tool. This is done through the ToolMsgReceiver, an interface that must be
implemented by each tool. It offers just one function that allows the receiving of messages. If
several messages are sent at once, then the earliest message will be at the beginning of the buffer.

interface LogCentralTool

{

short

connectTool(inout string toolName, in ToolMsgReceiver msgReceiver);

short

disconnectTool(in string toolName);

short addFilter(in string toolName, in filter_t filter);

short removeFilter(in string toolName, in string filterName);

short flushAllFilters(in string toolName);

[...]

The LogCentralTool interface is very close to the LogCentralComponent interface. Like
components, tools receive a unique name upon connection. This name serves as an identifier for
all future calls and can either be set by the tool or generated by the LogCentral. Upon connection,
a tool must pass a reference to it’s ToolMsgReceiver to be able to receive messages. After that,
it can define it’s filters using the addFilter() function. The filter t is composed of a list of
tags, a list of components and a unique name for the filter. As this name must only be unique
within the scope of this tool, no mechanism to automatically generate it is provided. Each tool
must ensure itself that it does not define two filters with the same name. If this happens anyway,
LogCental will deny to add this filter by returning LS TOOL ADDFILTER ALREADYEXISTS.

RemoveFilter() and flushAllFilters() do exactly what their names propose. They remove
one or all defined filters of this tool.

[...]

tag_list_t

getDefinedTags();

component_list_t

getDefinedComponents();

void

test();

The remaining functions of the LogCentralTool interface mainly provide convenience services.
Test() can be used to check the validity of a LogCentralTool reference. GetDefinedTags() re-
turns the list of available tags as defined in the configuration file. Tools who are written to monitor
a certain application usually don’t need this information, but there may exist general purpose
tools which are interested in which tags are available. GetDefinedComponents() returns a list of
currently connected components. A tool can compute this list itself by processing the received
IN and OUT messages, but very simple tools might want to use this function for convenience
reasons.

Tools that want to connect to the LogCentral need to obtain a reference to it’s LogToolComponent
servant. This reference will be registered by LogCentral in the Naming Service. The name of the
reference is ’LCT’ in the context ’LogServiceT’. The kind of reference and context is empty.

4.2.2 The LogToolBase library

DEPRECATED (the library is out of date)
Just like the LogComponentBase, the LogToolBase hides many details of the connection and

the message receiving. In order to use the LogComponentBase, the user must inherit from it and

12

overwrite the abstract function sendMsg(). This function will be called by the LogComponent-
Base’s MsgReceiver if a message is received.

A C++ and a Java implementation of the LogToolBase exist. Both follow the interface defined
in the IDL quite straightforward and will not be explained here. Look at the C++ header file3 or
the java source code4 for detail. The C++ library is based on omniORB and will be built with
the LogCentral. The java library relies on JAVAs built in ORB and is distributed in source code
only. There is no compilation support through the makefiles, so you must compile the IDL files
and all the java classes yourself. Please note that the LogToolBase was not extensively tested yet
and may still contain bugs.

5 How to write a quick component/tool

5.1 Component

An example of functionnal component can be found in DIET, in DIET HOME/src/utils/log/DIETLogComponent.cc.
The defined component must inherit from the component configurator IDL (the POA ComponentConfigurator
class) and have a Log Central Component attribute (type LogCentralComponent var). The class
must redefine 3 main functions plus some useful functions:

• The 3 main

– void setTagFilter(const tag list t& taglist)

– void addTagFilter(const tag list t& taglist)

– void removeTagFilter(const tag list t& taglist)

• The useful (that are not to be called by the user)

– void synchronize() : synchronization with the log central

– void ping() : ping the log central

Moreover, the class must provide log function(s). For example, it may offer

void log (char* tag, char* msg){

log_msg_t logM;

log_msg_buf_t out;

logMsg.componentName = CORBA::string_dup(name);

// name is the name of the component stored as an attribute of the class

logM.time = getLocalTime();

logM.tag = CORBA::string_dup(tag)

logM.msg = CORBA::string_dup(msg)

out[out.length()] = logM;

LCC->sendBuffer (out); // LCC is the Log Central Component attribute

}

The initialisation of the LCC element is done with a LogORBMgr::getMgr()->resolve(’LogServiceC’,
’LCC’) call, then you must bind (and fwdsBind) using this() and the name as parameters. Finally
you can connect the component with the connectComponent() call.

5.2 Tool

The examples testTool and DIETtestTool are 2 functionnal examples of how to make a tool.

3libraries/LogToolBaseC++/LogToolBase.hh
4libraries/LogToolBaseJava/LogToolBase.java

13

First the tool must inherit from POA ToolMsgReceiver and have a LogCentralTool attribute.
The initialisation of the log central tool attribute is made with a resolve (’LogServiceT’, ’LCT’),
then the tool is binded (with its name and this()). Finally the tool can be connected with a
connectTool call. A filter can be created and added with a addFilter call.

The class must only redefine the sendMsg(const log msg buf t& msg) function.
Nothing more is needed to have a functionnal tool (in fact you need a main and call the

initialisation sequence to have a functionnal tool)

6 Technical details of LogCentral

By now you should know everything you need know to use LogService. It is not mandatory to
read this section as it mainly contains technical information on how LogCentral is implemented.
It also explains LogCentral’s main components and the way they work together. This section
mainly addresses developers who want to change the sourcecode and give them a short overview
of LogCentral’s internals.

6.1 Overview of the log

Before explaining detailed scenarios we present the component diagram of LogCentral (see figure
1). Objects are denoted by boxes, fixed relationships by arrows and threads by circles. Please
note that the the LogCentralComponent impl and the LogCentralTool impl are servants that
can be called by the ORB while SendMsgReceiver and ComponentConfigurator are proxies for
distant objects.

A very important part of the system is the FullLinkedList (FLL) template. It offers a
double linked list that guarantees synchronisation. If an object wants to access the list, it has to
acquire an iterator. This iterator guarantees synchronous operation by locking the FLL’s internal
read/write mutex. This mutex won’t be unlocked until the list is destroyed. All synchronisation
in LogCentral is done by using this mutex in the FLL.

The ToolList and the ComponentList contain data shared by all objects, the Options class
acts as a central storage for all constants and the ReadConfig class is responsible for parsing the
configuration file. All other classes will be explained in the following sections that represent the
four major usecases of LogCentral.

6.2 Overview with the forwarders

The following image represent an overview of what needs to be running for the forwarder.

• In magenta, there are on each side of the network the omninames running.

• In yellow, there are the 2 forwarder, they communicate throught a ssh tunnel. Both of them
are under the same naming context.

• In grey is the LogCentral, the 2 boxes inside represent its component and its tool he registers
in the naming context.

• In orange are the tools, both of them are under the same context in the omninames and
linked to the log central. The first one is direct (black link), the red one is virtual, in fact
this tool is linked going through the forwarders, using the name saved in the omninames.

• In green are the components, both of them are under the same context in the omninames
and linked to the log central. The first one is direct (black link), the red one is virtual, in
fact this component is linked going through the forwarders, using the names saved in the
omninames.

14

*

filterList
FLL

MsgBuffer
FLL

Component−
Configurator

ComponentElement

ComponentList
FLL<ComponentElement>

Component_impl
LogCentral−

TimeBuffer CoreThread

Interface
Filtermanager−

Manager
SimpleFilter−

ToolList
FLL<ToolElement>

ToolElement

Receiver
SendMsg−

Tool_impl
LogCentral−

StateManager

SendThread

MsgBuffer
FLL

MsgBuffer
FLLFullLinkedList

(FLL) template

LogCentral components

ToolComponent LogCentral

LogTool APILogComponent API

*

Figure 1: LogCentral components

Figure 2: Example using the forwarders

6.3 Connection of Components

A component connects through the appropriate methods in LogCentralComponent impl. After
checking it’s name and generating a unique name if necessary, the LogCentralComponent impl

15

inserts the component in the ComponentList. It then notifies the filtermanager through the
FilterManagerInterface and receives the components initial configuration. After that it inserts
the component in it’s internal list that stores the latency and the last ping from the component.
The time of the last ping will be checked regularly by the AliveCheckThread, an internal thread
of the LogCentralComponent impl. The Disconnection of components works just the same.

6.4 Connection of Tools

The connection of tools works like the connection of components. A tool connects through the
LogCentralTool impl. It is inserted in the ToolList and the FilterManagerInterface is no-
tified. After that the LogCentralTool impl asks the StateManager to copy the actual sys-
tem state in the OutBuffer that has been assigned for the new tool. For disconnection, the
FilterManagerInterface is notified and the corresponding ToolElement is removed from the
list. Remaining messages and filters are deleted by this.

6.5 Configuration of filters

Filters will be configured through the LogCentralTool impl. It checks the name of the tool
as well as the name of the filter, inserts the filter in the tool’s FilterList and notifies the
FilteManagerInterface. The filtermanager will calculate a new configuration for each compo-
nent. It will check for each component if the configuration has changed and (if necessary) forward
the new configuration through the ComponentConfigurator assigned to this component.

6.6 Processing messages

Messages enter the system at the LogCentralComponent impl where their timestamp is altered
according to the internal latency list. Then the messages are stored in the TimeBuffer one by one.
The timebuffer will sort the messages automatically in it’s internal list. They remain there until
the CoreThread checks the timebuffer to find messages that are older than a defined minimum age.
It will remove the oldest message and check with the help of the StateManager if this message
is important for the systemstate. If yes, the statemanager will keep a copy of this message in it’s
statebuffer and the corethread will broadcast this message to all tools. Otherwise the corethread
passes the message to the FilterManager which will apply the necessary filters for each tool and
forward the message to all interested tools. In both cases the message is not sent directly, but
put in the tool’s OutBuffer. The outbuffers are cleared regularly by the SendThread. It checks
each tool’s outbuffer and uses the ToolMsgReceiver to actually send the messages.

7 Future works

LogService was written to monitor the DIET system. As such the project is finished and will
hopefully work properly the next years. Anyway some parts of LogService could be enhanced.
First of all the SimpleFilterManager could be replaced by filtermanager with better reconfig-
uration algorithms to increase the overall performance of the system. Second the statemanager
should eventually be changed to allow a more sophisticated description of corresponding messages
that allow a better model of the systemstate.

If you want to participate in this work or if you have any other questions concerning LogService,
don’t hesitate to mail the authors5 or the graal staff6. Any kind of feedback will be appreciated
to ensure the future development of this software.

5Georg Hoesch: hoesch@in.tum.de, Cyrille Pontvieux: cyrille.pontvieux@edu.univ-fcomte.fr
6Please follow the links on http://graal.ens-lyon.fr

16

