
norm User's Guide
NORM Version 1.4b4

1. Background ... 1
2. Building norm .. 2

2.1. Unix .. 2
2.2. Win32 .. 2

3. Concepts of Operation ... 2
3.1. File Transmission ... 3
3.2. Stream Transmission ... 3
3.3. General Properties Overview .. 4
3.4. Sender Properties Overview ... 4
3.5. Receiver Properties Overview ... 4

4. norm usage .. 5
4.1. Unicast Operation .. 5

5. Command Reference ... 5
5.1. General Commands .. 5
5.2. Sender Commands ... 7
5.3. Receiver Commands ... 10

6. Parameter Considerations ... 11
7. Example Usage ... 11
A. "raft" Usage .. 12

1. Background
This document describes the usage of a demonstration application that uses the NACK-Oriented Reliable Multicast
(NORM) transport protocol for reliable transmission of files, byte or message stream content. The name of the
executable binary is "norm". It should be noted that this "demonstration application" applies a subset of the cap-
ability of the NORM protocol. Additionally, the current version of this application does not use the NORM Ap-
plication Programming Interface (API) that is described in the "NORM Developer's Guide". The current norm
demonstration application source code preceded the development of the NORM API. A future version of this
demonstration application will be created that uses the NORM API and will also serve as a reference to NORM
developers.

The norm application supports the following uses:

1. One time or repeated tranmission/reception of a set of files or directories

2. Transmission/reception of a byte stream piped into the STDIN of the sender application instance (Unix systems
only)

3. Transmission/reception of a "message" stream piped into the STDIN of the sender application instance (Unix
systems only)

The norm command-line (and run-time remote control interface) allow configuration of a large number of NORM
protocol parameters. Again, note that while a considerable range of NORM protocol functionality is available in
the norm application, it does not demonstrate the full set of NORM protocol capabilities. The distribution also
includes the raft and npc (NORM Pre-coder) applications that can be used as "helpers" to the norm demonstration
application for various purposes.

The NORM protocol is described in Internet Engineering Task Force (IETF) Request For Comments (RFC) RFC
3940 and RFC 3941. These are experimental RFC standards. These documents have been revised in recent Internet-

1

Drafts and it should be noted that the Naval Research Laboratory (NRL) implementation of NORM that is repres-
ented here has been updated to reflect the revised protocol.

In addition to this demonstration application, NRL provides a NORM protocol library with a well-defined API
that it is suitable for application development. Additionally, the NRL source code distribution supports building
the NORM protocol as a component into ns-2 and OPNET network simulation environments. Refer to the NRL
NORM website <http://cs.itd.nrl.navy.mil/work/norm> for these other components as well as up-to-date versions
of this demonstration application and documentation.

2. Building norm
The norm application can be built from the NRL NORM source code distribution. For several Unix-based operating
systems, "Makefiles" are provided to build the NORM protocol library and example applications including this
one. For Win32 and WinCE systems, workspace and project configuration files are provided for the Microsoft
Visual C++ development environment.

2.1. Unix

To build the norm demonstration application:

1. Download and unpack the NORM source code tarball.

2. cd norm/unix

3. make –f Makefile.<operating system> norm

2.2. Win32

To build the norm demonstration application:

1. Download and unpack the NORM source code tarball

2. Make sure your VC++ environment has the Microsoft "Platform SDK" installed and is configured to use its
header, library, and executable files.

3. Open the "norm.sln" (VC++ .Net), "norm.dsw" (VC++ 6.0), or "norm.vcw" (Embedded VC++) workspace
file.

4. The "norm" project can be selected and built. The "norm.exe" file will be found in the
"norm/win32/norm/Release" directory.

3. Concepts of Operation
The norm application supports several different uses. The most typical use is reliable multicast of files from a
sender to a set of receivers. However, on Unix systems, the option is available to pipe (via STDIN) live byte or
"message" streams into the norm sender application for transmission to the receiver(s).

The norm address command specifies the destination address and port to which NORM protocol messages are
transmitted. For multicast operation, senders and receivers must use a common address and port number. Unicast
operation is also supported, but some care must be taken with usage. Typically, for unicast operation, receivers
should be configured with the unicastNacks option to ensure that feedback messages are properly directed back
to the appropriate sender.

NORM messages are sent in User Datagram Protocol (UDP) packets. The user must make sure that any firewall
configuration allows transmission and reception of UDP datagrams for norm to work properly.

Most of the NORM protocol parameters are set at the sender and the NORM protocol advertises parameters to the
receiver(s) in the headers of NORM messages. This allows for somewhat loosely coordinated multicast operation.

2

norm User's Guide

http://cs.itd.nrl.navy.mil/work/norm

Typically, it is expected that receivers will join the applicable multicast group and begin listening ahead of time.
Then, the sender(s) will transmit content to the group for reliable transfer. For NORM stream operation, it is

important to note that the norm demonstration application only supports a single sender per multicast group.

3.1. File Transmission

Receiver norm instances must use the rxcachedirectory command to specify a file system directory that is used to
store received content. Note that the post processing (see processor command description) option of norm allows
received content to be processed and/or removed from this cache directory to a permanent storage location if desired.

The sendFile command is used for the norm sender(s) to specify the file(s) and/or directories that should be
transmitted. By default, the files are sent once. Directories are recursively scanned for files and those files are
transmitted once. Note that zero-sized files are not transmitted. The repeatcount and rinterval (repeat interval)
commands can be used to repeat transmission of the file/directory set on a scheduled interval after completion of
prior transmission. Additionally, the sender updatesOnly option can be specified so that on repeated scan of the
file/directory set, only files that have been changed or added are transmitted. This allows the option for a "hot
outbox" to be set up that is monitored by the norm sender for transmission of files to the group. A simple multicast
file sharing capability can be created in this way.

By default, files enqueued for transmission with the sendFile command are transmitted immediately, one after the
other, but the interval command is available to pace the transmission of files. This can be used to allow time for
post-processing at the receivers of subsequent files before new files are sent.

This is a synopsis of the most typically-used commands for file transmission. A number of other commands are
available to customize the norm file transmission behavior. The reader is encouraged to read the descriptions of
the available commands given later to understand the full range of options available.

3.2. Stream Transmission

Currently, this option is available only for Unix-based operating systems. Instead of transmitting files from the
file system, the user may pipe (via STDIN) content directly to the norm sender application instance using the norm
input or minput commands.. At receivers, the received content is directed to a descriptor set using the norm receiver
output or moutput command. Two forms of stream transmission are available:

1. raw, unformatted "byte" streams, and

2. "message" streams.

The distinction between these two types is the presence of explicit message boundaries. The NORM protocol allows
receivers to automatically recover message boundaries that have been marked by the NORM sender. This is useful
when receivers may join the NORM session while it is already in progress or if there is intermittent network con-
nectivity.

The input and output commands resepectively set sender and receiver "byte-stream" operation while the minput
and moutput commands similarly set "message-stream" operation. It is expected that the "message-stream" oper-
ation offers the most utility for most purposes. "Byte-stream" operation may be used if the content is something
like human-readable text, etc where distinct message boundaries may not be important. Again, note that norm
receivers should begin listening before the sender begins transmitting for most effective uses of "byte-stream"
operation.

For "message stream" operation, the norm application presumes that the first two bytes of messages are the message
size (in bytes) in Big Endian (network) byte order. The NRL mgen (see <http://cs.itd.nrl.navy.mil/work/mgen>)
and raft applications can be used to provide messages to norm in this format. The mgen application can be used
to measure NORM message delivery performance for testing and experiment purposes, while raft provides the
ability to capture UDP packet flows (e.g. Real-Time Protocol (RTP) video, etc) and reliably "tunnel" the UDP
messages through NORM transport. At the receiver(s), raft can be correspondingly used to reconstruct UDP data-
grams from the norm "message-stream" content. The usage of raft is described in Appendix A (TBD) of this
document.

3

norm User's Guide

http://cs.itd.nrl.navy.mil/work/mgen

3.3. General Properties Overview

Most norm commands are for specifically sender or receiver operation. There are some commands that apply to
both. These include the instance command that establishes a "remote control" inter-process communication facility
that can be used to pass commands to instances of the norm program that are already running. Also, the debug,
trace, and log commands are provided to display and/or store debugging output from the norm application and
NORM protocol code. The txloss and rxloss commands are provided to invoke random dropping of sent or received
NORM protocol messages for testing purposes. Other commands, like address, ttl, loopback, txport, and interface
control the behavior of NORM UDP packet transmission and reception.

3.4. Sender Properties Overview

The norm sender configuration controls most aspects of NORM protocol operation. This includes transmission
rate, packet size, Forward Error Correction (FEC) configuration, etc. The rate command determines the norm
sender transmission rate in units of bits/second. The segment command sets the maximum size of NORM message
payloads. The block, parity, and auto commands respectively set the number of user data segment per FEC block,
number of calculated parity segments per FEC block, and number of proactively (automatically) transmitted parity
segments per FEC block. The backoff command sets the maximuim number of round-trip time intervals over
which timer-based feedback suppression is scaled and the grtt command sets the sender's initial estimate of round-
trip time for the group. A detailed understanding of these various NORM protocol parameters can be attained by
reviewing the NORM protocol specification documents and the "NORM Developer's Guide".

Another significant norm sender command is the txbuffer command. This sets the size of the NORM sender cache
for calculated parity segments and FEC block repair state. For norm stream operation, this command also determines
the size of the stream buffer. The stream buffer size limits the "repair window" when norm stream operation is
used. A relatively large stream buffer size may be needed for high (bandwidth*delay, packet loss) conditions.
 Some other significant commands applicable to norm stream operation include the push and flush commands.

Although NORM is a NACK-based protocol, it does support optional collection of positive acknowledgement
(ACK) from a subset of the receiver group. The norm ackingNodes and related ackshot commands can be used
to exercise this optional protocol behavior.

Finally, in addition to the fixed transmission rate operation set with the rate command, norm also supports enabling
automated congestion control with the cc command. The bounds of congestion control rate adjustment can be
optionally set with the limit command.

3.5. Receiver Properties Overview

As mentioned, most of the NORM protocol behavior is controlled by the sender, but there are some options that
the receiver can exercise. The most significant of these is the ability to put the receiver in an emission-controlled
(EMCON), or "silent receiver" mode where no NACK or other feedback messages are generated. The silentClient
command is available for this purpose. This is useful when using NORM for reliable transport over unidirectional
network connectivity (In this case, it is expected the norm sender has been configured with some amount of auto
(proactive) FEC parity in its transmission to overcome nominal packet loss). For optional use with the silentClient
command, the lowDelay command is available to expedite delivery of received content (even if for a partially-re-
ceived FEC block) to the application when subsequent FEC coding blocks are received. The default behavior
would be for the norm receiver to buffer partially-received content as long as possible for possible repair in response
to some other NACKing (non-silent) receiver. The lowDelay command overrides this default behavior.

The processor command is available to the norm receiver to specify a application, command, or script that is invoked
upon successful completion of reception of files. The specified command is invoked with the received file name
as the last argument. Users may employ this command to move received content to a permanent storage location,
display received content, or other purposes (One could even cleverly control norm receiver or other system operation
in this way if desired). A related command is the saveAborts command that causes even incomplete files (aborted)
to be passed to the receiver post processor. An example use of this option would be if the files transmitted were
pre-encoded with the npc (Norm Pre-Coder) utility such that original file content can be recovered from a partial
npc-encoded file (See the npc User Guide for details).

4

norm User's Guide

4. norm usage
The norm application is launched from a command-line interface (e.g. Unix or DOS shell). Many of the norm
parameters have default values, but typically the user will wish to set at least some of these differently than their
defaults.

A minimal example norm sender command-line syntax is:

norm addr <addr/port> sendFile <fileName>

The corresponding minimal norm receiver command-line syntax would be:

norm addr <addr/port> rxcachedir /tmp

The sender would begin sending the specified <filename> at a transmit rate of 64 kbps. The receiver would receive
the file and store it in the "/tmp" directory.

Typically, it is expected that the user would wish to set the norm transmit rate or enable congestion control operation.
The norm application was designed principally for long-term participation in an IP multicast group with the re-

ceiver application running all of the time, post-processing received content as it arrived, and sender(s) transmitting
content to the group (e.g., using the "hot outbox" approach mentioned) as it was available.

The norm receiver command-line syntax to support this operation would be:

norm addr <addr/port> rxcachedir /tmp processor <postprocessor>

The norm sender command-line syntax would be:

norm addr <addr/port> rate <bps> sendFile <outboxDirectory> repeat -1 updatesOnly

The "repeat -1" would cause norm to scan the <outboxDirectory> indefinitely for new file content and transmit
those files to the specified group address and port. Note the transmit rate is specified in units of bits/second.

4.1. Unicast Operation

For unicast operation, the following usage is recommended:

Receiver: norm addr 127.0.0.1/<port> unicastNacks rxcache <cacheDirectory> …

Sender: norm addr <rcvrAddr/port> sendFile <filename> …

The norm receiver address is really a "don't care" value since feedback is transmitted to the sender's unicast source
address and port detected during packet reception.

5. Command Reference
The following tables list the available norm command-line options. Note that if the instance command is used,
many of these commands may be issued to instances of the norm application that are already running. The tables
are grouped by the categories of "General", "Sender", and "Receiver" commands.

Note that norm commands may be abbreviated on the command-line if desired.

5.1. General Commands

Designates session address and port number. For multic-
ast operation, sender(s) and receiver(s) should use com-

address <addr>/<port>

mon address and port parameters. For unicast operation,
the sender must designate the intended receiver address
and port and the receiver must specify the same session

5

norm User's Guide

port number. The receiver unicastNacks command
should be used for unicast operation. IPv4 and IPv6 ad-
dresses are supported.

Specify a specific source port number for NORM trans-
mission. This can also be set to equal the session port

txport <port>

(ie. rxport). Default is system-assigned transmit port
number.

Designates session multicast time-to-live (hop count).
The default value is 255.

ttl <value>

Sets the network interface for multicast packet transmis-
sion/reception. <ifaceName> is name or IP address of

interface <ifaceName>

a valid network interface. Default is system default
multicast interface.

Optionally enables reception of norm's own messages.
 Useful for loopback testing of sender/receiver configur-
ation. Default = "off".

loopback {on | off}

Set the “robust factor” that determines the number of
times NORM protocol NORM_CMD(FLUSH) messages

txrobustfactor <value>

are sent at end-of-transmission, how robustly positive
acknowledgement collection is conducted, and how
other “robustly-transmitted” (repeat-transmitted) sender
control messages are managed. Higher “robust factor”
values makes increases the assurance of protocol success
in the face of significant packet loss. Lower values can
be used to make norm less “chatty” but at the cost of re-
duced certainty that protocol operation will succeed under
all circumstances. Note that this parameter needs to be
consistently set at both the norm senders and receivers.
 Unlike many of the other parameters, this value is not
advertised by the sender to the receivers in the NORM
protocol message headers. The default value is 20. This
provides about 95% likelihood of protocol success even
with 50% packet loss. This is based on the probability
that the receiver gets the sender NORM_CMD(FLUSH)
messages and the sender gets NACKs from the receivers
needed to complete reliable transfer. The special value
of -1 will make norm indefinitely perform the related
protocol actions (sender flush transmission, positive ac-
knowledgement collection until success, etc). This is
typically not recommended.Default = 20.

Specifies "name" of the first running instance. If a norm
instance is already running with the specified <instance-

instance <instanceName>

Name> the commands given will be issued to that
already-running instance of norm.

Sets verbosity of debug output. Higher values are more
verbose. The range is from 0-12. The default debug
level is zero.

debug <debugLevel>

Enable/disable NORM protocol message trace in debug
output. Message trace is timestamped logging of inform-
ation for every packet sent or received. Default = "off".

trace {on | off}

Directs debug output to specified file.log <filename>

Sets percentage of messages to be transmitted that are
randomly dropped (for testing purposes). Default = 0.0
percent.

txloss <percent>

6

norm User's Guide

Sets percentage of received messages that are randomly
dropped (for testing purposes). Default = 0.0 percent.

rxloss <percent>

Displays command set with short descriptions.help

5.2. Sender Commands

Sets the sender maximum transmission rate. All sender
transmissions (user data, repair, protocol messages) are
subject to this rate limit. Default = 64 kbps.

rate <rate in bits/sec>

Enables/disables NORM TCP-friendly congestion control
operation. When turned on, a rate-based congestion

cc {on|off}

control scheme allows fair sharing of the network with
other network flows. When turned off, norm will trans-
mit at the transmit rate set by the rate command. Default
= "off".

Sets lower/upper bounds on transmit rate adjustment
when congestion control operation is enabled. A value

limit <rateMin:rateMax>

of -1.0 indicates no limit. Default rateMin/rateMax = -
1.

Sets norm message payload size (segment size) in bytes.
 Default = 1024 bytes.

segment <bytes>

Sets number of user (source) data segments per FEC
encoding block. Default = 64.

block <segments>

Sets number of parity segments calculated per FEC en-
coding block. Default = 32.

parity <count>

Sets the number of parity segments that are proactively
(automatically) transmitted with each block of user

auto <count>

(source) data segments. A non-zero count can provide
for robustness/reliability with no NACKing from receiv-
ers required. This value must be less than or equal to
the value set with the parity command.Default = 0.

Instructs the sender to respond to repair requests
(NACKs) by sending <count> extra repair segments

extra <count>

beyond what the receiver(s) requested. For experimental
purposes. Default = 0.

This informs the norm sender that silent receivers will
be used and it should redundantly transmit NORM_INFO
content at the end of each FEC coding block.

silentClient

Sets the norm sender's initial estimate of group round-
trip timing. This value affects the latency of the NORM

grtt <seconds>

repair process (and thus impacts buffer size require-
ments). Default = 0.5 seconds.

Set the factor used to scale feedback suppression backoff
timeouts. Small groups not concerned about feedback

backoff <factor>

 implosion may use small or zero values to minimize
delay of NORM repair process. Default = 4.

Sets the norm sender transmit buffer and stream buffer
size, if applicable. The transmit buffer is used to cache

txbuffer <bytes>

calculated FEC parity segments and FEC code block re-
pair state. The stream buffer size limits the "repair win-
dow" for stream transmission (and hence maximum
possible latency).Default = 1Mbyte.

7

norm User's Guide

This sets the “transmit cache bounds” that are used to
determine how many prior transmit objects for which

txcachebounds <countMin:countMax:sizeMax>

the norm sender maintains state. This essentially limits
the “repair window size” that the NORM sender observes
has for responding to repair requests (NACKs) from re-
ceivers. The “transmit cache bounds” also SHOULD be
set to be compatible with any use of the requeue option
described below (i.e. the safest thing to do is set
<countMin> here to a value greater or equal to the
number of files in the transmit file/directory list, includ-
ing the count of files in any directories).

The <countMin> value sets a minimum number of
transmit objects (files) for which the NORM sender will
keep repair state, regardless of the file sizes while the
<countMax> value sets a maximum object count that the
NORM sender will keep in its “repair window”. The
<sizeMax> value in units of bytes) limits the repair
window according to sum total of the file sizes in the
cache, providing that state is kept for at least <countMin>
objects. The <countMax> limit is most useful when the
file sizes are somewhat small (i.e. <sizeMax> is not
reached) and the user wishes to limit repairs of “older”
files sent. Note that <sizeMax> does not directly relate
to memory allocation since NORM recovers file data
directly from the file storage system as needed.

An IMPORTANT caveat here is that the current NRL
NORM implementation has a hard-coded limit that
NORM receiver will keep state for a maximum of 256
objects per sender. Thus, the value of setting the tx-
cachebounds count values greater than 256 is limited.
This limitation will be fixed in an updated to the NORM
code and will be reflected here.

Default: countMin = 8, countMax = 256, sizeMax = 20
Mbyte

Sets the estimate of receiver group size used by NORM
for scaling time-based feedback suppression.

gsize <count>

Adds a file or directory to the norm transmit file/directory
list. Directories are recursively scanned for files. Zero-
sized files are not transmitted.

sendFile <path>

Repeat scan or transmission of transmit file/directory list
set with sendFile command. A <count> of -1 means in-

repeatcount <count>

finite repeats. With each “repeat” pass through the
transmit file/directory, the files are sent with new
NormTransportId values and considered separate transmit
objects by the NORM protocol. This is different than
the requeue option which causes the file(s) to be repeat
transmitted with the same NormTransportId. Note these
two different options can be used together and the result
is a “multiplicative” effect with regard to the amount
transmission that occurs.Default = 0.

Specifies a time delay between repeated scan or transmis-
sion of transmit file/directory list. Default = 2 seconds.

rinterval <seconds>

8

norm User's Guide

Specifies the number of additional repeat transmissions
of the each file using the same NormTransportId such

requeue <count>

that the multiple transmissions can be “stitched” together
by the receiver into a successful reception even if a single
transmission is unsuccessful (useful for “silent receiver”
mode along with the “auto” parity option). This is dis-
tinct from the repeatcount option in that the repeatcount
option specifies how many repeated passes through the
transmit file/directory list with files getting new
NormTransportIds and thus considered separate NORM
transmit objects. Note these two different options can be
used together and the result is a “multiplicative” effect
with regard to the amount transmission that occurs. A
requeue <count> value of 0 means that each file in the
transmit file/directory list is sent once as a distinct
NORM transport object (i.e. no requeue occurs). A re-
queue <count> value of -1 indicates the files are requeued
indefinitely (and thus any configured “repeatcount” or
“updatesOnly” options become irrelevant). Note that if
the number of files in the transmit file/directory list ex-
ceeds the txcachebounds limits, then the “requeue” option
will not work. Thus, it is important to set the tx-
cachebounds accordingly to use the requeue option. De-
fault = 0 (disabled)

Upon repeat transmission of the transmit file/directory
list, NORM will only transmit files which have been

updatesOnly

added or updated since the previous transmission. This,
along with the "repeat" and "rinterval" options can be
used to create a sort of "hot outbox" capability.

Causes the norm sender application to exit after the
NORM TX_FLUSH_COMPLETED event at the end of

oneshot

file list transmission. By default, the norm sender applic-
ation will run indefinitely.

The comma-delimited list of NORM node identifiers is
used with NORM positive acknowledgement operation.

ackingNodes <node1,node2,…>

Acknowledgment from the specified list of nodes is
collected for each transmitted file before sending sub-
sequent files. The norm application uses its host's default
IP address for a "node id". Default is no acking nodes.

The sender application exits after completing positive
acknowledgement collection.

ackshot

Sets norm sender "byte-stream" operating mode using
input from specified <device> path or STDIN. With

input {<device> | STDIN}

STDIN, the STDOUT of another process may be piped
into the norm sender. (Unix-only).

Sets norm sender "message-stream" operating mode using
input from specified <device> path or STDIN. With

minput {<device> | STDIN}

STDIN, the STDOUT of another process may be piped
into the norm sender. "Messages" are expected to have
a 2-byte, Big Endian message size prefix. (Unix-only).

Sets norm sender flush behavior for "message-stream"
operation. Valid options include "none", "passive", and

flush <flushMode>

"active". With "none", no flushing is invoked; stream
transmission simply pauses when no input data is avail-
able and norm always sends full NORM_DATA mes-

9

norm User's Guide

sages according to the set <segmentSize>. With "pass-
ive" or "active" flushing enabled, the NORM stream is
flushed with each completed message and variable-sized
NORM_DATA messages may result. With "active"
flushing, the NORM_CMD(FLUSH) message is actively
transmitted when there is no data available to transmit.
This makes NORM more "chatty" but provides more

robust, lower-latency reliability for stream transmis-
sion.Default <flushMode> = "none".

When set, new input data is always written to the NORM
stream regardless of pending repair transmissions. This

push

favors new application data transmission over repair of
older stream data. Suitable for applications that can tol-
erate "quasi-reliability" and desire low latency.

5.3. Receiver Commands

To invoke norm receiver operation, one of the rxcachedir, output, or moutput commands MUST be given on
the command-line.

Sets the directory where received file content is stored
by the norm receiver. This is a required command for
norm file reception.

rxcachedir <path>

Specifies command (and any options for that command)
for post-processing of received files. The received <file-

processor <command>

name> is appended as the last argument to the specified
command when invoked for each received file.

Causes incomplete (aborted) files that are partially re-
ceived to be saved and/or passed to the post processor.

saveAborts

The default behavior is that incomplete, partially re-
ceived files are deleted.

Received "byte-stream" output is directed to the specified
<device> path or STDOUT.

output {<device> | STDOUT}

Received "message-stream" output is directed to the
specified <device> path or STDOUT. Output messages

moutput {<device> | STDOUT}

will have a 2-byte, Big-Endian prefix indicating the
message size.

Feedback messages are unicast back to detected sender
source address(es) instead of being sent to the norm

unicastNacks

session address. Default behavior is feedback is sent to
the session (usually multicast) address. This receiver
option is RECOMMENDED for unicast operation.

In this mode, the receiver sends no feedback messages
and relies solely upon sender proactive (auto parity) FEC
content for reliable reception.

silentClient

For use with silentClient operation. Source data for
partially-received (incomplete) FEC coding blocks is

lowDelay

provided to the application immediately when subsequent
FEC blocks are received. This minimizes delay of deliv-
ery of user data to the application. The default behavior
is to buffer partially-received FEC blocks for as long as
possible in case repair transmissions (due to other non-
silent receivers) are provided.

10

norm User's Guide

This sets a “robust factor” value at receivers that determ-
ines how persistently the receiver keeps state for remote

rxrobustfactor <value>

senders that are not currently, actively transmitting data.
This also corresponds to the maximum number of times
the norm receiver will “self-initiate” NACKing to such
an inactive sender before giving up. Unless rxpersist is
specified (see below), the receiver will also free memory
resources allocated for an inactive sender at this time. A
<value> of -1 causes the receiver to be “infinitely” per-
sistent. The default value is 20.

If this option is given, the receiver keeps full state on
remote senders indefinitely, even when they go “inactive”

rxpersist

(see above). The default behavior when this is not spe-
cified is for norm to free buffer memory resources alloc-
ated for senders after a timeout based on the txrobust-
factor, rxrobustfactor, and measured GRTT.

Specifies the size of the norm receiver buffer that is al-
located on a per-sender basis. This buffer is used to

rxbuffer <bytes>

cache partially-received FEC coding blocks and associ-
ated object repair state. An operating mode or network
connectivity with significant (bandwidth*delay, packet
loss) may necessitate larger rxbuffer settings to preserve
protocol efficiency.Default = 1 Mbyte.

Sets the size of the UDP receive socket buffer used for
norm sockets. An extremely high transmission rate may

rxsockbuffer <bytes>

require socket buffer settings above normal system de-
faults.

6. Parameter Considerations
(TBD) Discuss the considerations and trade-offs of NORM parameter selection. (e.g. FEC parameters, buffer
sizes, etc). Note some of these issues are described in the NORM Developer's Guide and/or NORM Protocol
specifications.

7. Example Usage
The example command-line usages listed below assume that NRL's MGEN packet generator is being used as a
data source. For more information about MGEN, to include download and installation instructions, see <ht-
tp://cs.itd.nrl.navy.mil/work/mgen>.

1. Message stream" transmission example(with MGEN sender):

mgen event “on 1 sink dst 0.0.0.0/1 periodic [200 1252]” output /dev/null sink STDOUT |

norm addr 224.1.1.1/5001 rate 3000000 segment 1252 block 40 parity 16 auto 6 backoff 0

minput STDIN

2. "Message stream" reception example (with MGEN receiver):

norm addr 224.1.1.1/5001 backoff 0 moutput STDOUT | mgen source STDIN output mgenLog.drc

3. File transmission:

norm addr 224.1.1.2/5002 rate 5000000 send <fileName>

4. File reception:

norm addr 224.1.1.2/5002 rxcachedir /tmp

11

norm User's Guide

http://cs.itd.nrl.navy.mil/work/mgen
http://cs.itd.nrl.navy.mil/work/mgen

A. "raft" Usage
The NRL NORM source code distribution supports building the "Reliable Application For Tunneling" (raft) utility
that can be used as a helper application with norm to tunnel a UDP datagram flow over a reliable NORM "message
stream" tunnel. The raft application can be configured to listen to a UDP port, optionally joining an IP Multicast
group, and output received UDP payloads as "messages" to its STDOUT. This, in turn, can be piped into the
STDIN of the norm application for message-stream tranmission. Additionally, on the norm receiver side, raft can
be configured to accept messages from STDIN and re-encapsulate these as UDP datagrams transmitted to a specifed
destination address and port.

(TBD) Finish description of raft usage and provide example of use with norm

12

norm User's Guide

