// Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_LAPACk_ES_Hh_
#define DLIB_LAPACk_ES_Hh_
#include "fortran_id.h"
#include "../matrix.h"
namespace dlib
{
namespace lapack
{
namespace binding
{
#if defined(__alpha__) || defined(__sparc64__) || defined(__x86_64__) || defined(__ia64__)
typedef int logical;
#else
typedef long int logical;
#endif
typedef logical (*L_fp)(...);
extern "C"
{
void DLIB_FORTRAN_ID(dgees) (const char *jobvs, const char *sort, const L_fp select, const integer *n,
double *a, const integer *lda, integer *sdim, double *wr,
double *wi, double *vs, const integer *ldvs, double *work,
const integer *lwork, logical *bwork, integer *info);
void DLIB_FORTRAN_ID(sgees) (const char *jobvs, const char *sort, const L_fp select, const integer *n,
float *a, const integer *lda, integer *sdim, float *wr,
float *wi, float *vs, const integer *ldvs, float *work,
const integer *lwork, logical *bwork, integer *info);
}
inline int gees (char jobvs, integer n,
double *a, integer lda, double *wr,
double *wi, double *vs, integer ldvs, double *work,
integer lwork)
{
// No sorting allowed
integer info = 0;
char sort = 'N';
L_fp fnil = 0;
logical bwork = 0;
integer sdim = 0;
DLIB_FORTRAN_ID(dgees)(&jobvs, &sort, fnil, &n,
a, &lda, &sdim, wr,
wi, vs, &ldvs, work,
&lwork, &bwork, &info);
return info;
}
inline int gees (char jobvs, integer n,
float *a, integer lda, float *wr,
float *wi, float *vs, integer ldvs, float *work,
integer lwork)
{
// No sorting allowed
integer info = 0;
char sort = 'N';
L_fp fnil = 0;
logical bwork = 0;
integer sdim = 0;
DLIB_FORTRAN_ID(sgees)(&jobvs, &sort, fnil, &n,
a, &lda, &sdim, wr,
wi, vs, &ldvs, work,
&lwork, &bwork, &info);
return info;
}
}
// ------------------------------------------------------------------------------------
/* -- LAPACK driver routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* .. Function Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DGEES computes for an N-by-N real nonsymmetric matrix A, the */
/* eigenvalues, the real Schur form T, and, optionally, the matrix of */
/* Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T). */
/* Optionally, it also orders the eigenvalues on the diagonal of the */
/* real Schur form so that selected eigenvalues are at the top left. */
/* The leading columns of Z then form an orthonormal basis for the */
/* invariant subspace corresponding to the selected eigenvalues. */
/* A matrix is in real Schur form if it is upper quasi-triangular with */
/* 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the */
/* form */
/* [ a b ] */
/* [ c a ] */
/* where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc). */
/* Arguments */
/* ========= */
/* JOBVS (input) CHARACTER*1 */
/* = 'N': Schur vectors are not computed; */
/* = 'V': Schur vectors are computed. */
/* SORT (input) CHARACTER*1 */
/* Specifies whether or not to order the eigenvalues on the */
/* diagonal of the Schur form. */
/* = 'N': Eigenvalues are not ordered; */
/* = 'S': Eigenvalues are ordered (see SELECT). */
/* SELECT (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION arguments */
/* SELECT must be declared EXTERNAL in the calling subroutine. */
/* If SORT = 'S', SELECT is used to select eigenvalues to sort */
/* to the top left of the Schur form. */
/* If SORT = 'N', SELECT is not referenced. */
/* An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if */
/* SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex */
/* conjugate pair of eigenvalues is selected, then both complex */
/* eigenvalues are selected. */
/* Note that a selected complex eigenvalue may no longer */
/* satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since */
/* ordering may change the value of complex eigenvalues */
/* (especially if the eigenvalue is ill-conditioned); in this */
/* case INFO is set to N+2 (see INFO below). */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the N-by-N matrix A. */
/* On exit, A has been overwritten by its real Schur form T. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* SDIM (output) INTEGER */
/* If SORT = 'N', SDIM = 0. */
/* If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
/* for which SELECT is true. (Complex conjugate */
/* pairs for which SELECT is true for either */
/* eigenvalue count as 2.) */
/* WR (output) DOUBLE PRECISION array, dimension (N) */
/* WI (output) DOUBLE PRECISION array, dimension (N) */
/* WR and WI contain the real and imaginary parts, */
/* respectively, of the computed eigenvalues in the same order */
/* that they appear on the diagonal of the output Schur form T. */
/* Complex conjugate pairs of eigenvalues will appear */
/* consecutively with the eigenvalue having the positive */
/* imaginary part first. */
/* VS (output) DOUBLE PRECISION array, dimension (LDVS,N) */
/* If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur */
/* vectors. */
/* If JOBVS = 'N', VS is not referenced. */
/* LDVS (input) INTEGER */
/* The leading dimension of the array VS. LDVS >= 1; if */
/* JOBVS = 'V', LDVS >= N. */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) contains the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= max(1,3*N). */
/* For good performance, LWORK must generally be larger. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* BWORK (workspace) LOGICAL array, dimension (N) */
/* Not referenced if SORT = 'N'. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: if INFO = i, and i is */
/* <= N: the QR algorithm failed to compute all the */
/* eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI */
/* contain those eigenvalues which have converged; if */
/* JOBVS = 'V', VS contains the matrix which reduces A */
/* to its partially converged Schur form. */
/* = N+1: the eigenvalues could not be reordered because some */
/* eigenvalues were too close to separate (the problem */
/* is very ill-conditioned); */
/* = N+2: after reordering, roundoff changed values of some */
/* complex eigenvalues so that leading eigenvalues in */
/* the Schur form no longer satisfy SELECT=.TRUE. This */
/* could also be caused by underflow due to scaling. */
// ------------------------------------------------------------------------------------
template <
typename T,
long NR1, long NR2, long NR3, long NR4,
long NC1, long NC2, long NC3, long NC4,
typename MM,
typename layout
>
int gees (
const char jobz,
matrix<T,NR1,NC1,MM,column_major_layout>& a,
matrix<T,NR2,NC2,MM,layout>& wr,
matrix<T,NR3,NC3,MM,layout>& wi,
matrix<T,NR4,NC4,MM,column_major_layout>& vs
)
{
matrix<T,0,1,MM,column_major_layout> work;
const long n = a.nr();
wr.set_size(n,1);
wi.set_size(n,1);
if (jobz == 'V')
vs.set_size(n,n);
else
vs.set_size(NR4?NR4:1, NC4?NC4:1);
// figure out how big the workspace needs to be.
T work_size = 1;
int info = binding::gees(jobz, n,
&a(0,0), a.nr(), &wr(0,0),
&wi(0,0), &vs(0,0), vs.nr(), &work_size,
-1);
if (info != 0)
return info;
if (work.size() < work_size)
work.set_size(static_cast<long>(work_size), 1);
// compute the actual decomposition
info = binding::gees(jobz, n,
&a(0,0), a.nr(), &wr(0,0),
&wi(0,0), &vs(0,0), vs.nr(), &work(0,0),
work.size());
return info;
}
// ------------------------------------------------------------------------------------
}
}
// ----------------------------------------------------------------------------------------
#endif // DLIB_LAPACk_ES_Hh_